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SIMPLE FORMULAS AND GRAPHS FOR DESIGN OF VENTED LOUDSPEAKER SYSTEMS

Patrick J. Snyder
Speakerlab, Inc.
5500 - 35th NE
Seattle, WA 98105

This paper gives formulas for designing both fourth-
order and sixth-order (equalized) systems for a given
woofer. The formulas specify the frequency to which
the box must be tuned, based on the woofer parameters.
The designer has a choice of box volumes and cutoff fre-
quencies (which are related). Graphs of the frequency
response (versus box volume and woofer parameters) are

also given. The graphs are scaled in units of fs/Qt and

VasQt 2, which makes them applicable to a very wide range

of woofers and box sizes.

INTRODUCTION

The problem of finding the frequency response curve for a vented (bass
reflex) loudspeaker system was first solved, for readers in this
country at least, by the reprinting of Neville Thiele's classic paper
"Loudspeakers in Vented Boxes" in the Journal of the Audio Engineering

Society in 1971 (Ref. 1). His equation (12) gives the system frequency
response function based on the physical parameters of the woofer and
enclosure used.

Thiele simplified the problem by assuming that the enclosure Q (Qb),
that is, the Q associated with the resonance of the air mass in tne

with the compliance of the volume of air in the box, is infinite.
_1 gives the system response function taking into account the

enclosure Q (Ref. 2, equation 13).

One might think that the "mother lode" of information provided by the
system response function would have been pretty well mined out by now by
the many investigators who have worked on this problem. Not so.

While measuring the properties of woofers that our company produces, I
observed that while there was considerable unit-to-unit variation in

the parameters of woofers of the same model, these variations had little
effect on the acoustic performance of the systems in which they were
used. This suggested to me that the performance of loudspeaker systems
is actually determined by one or more relatively invariant properties
of the woofers, while the commonly measured parameters defined above



are unduly influenced by some varying factor that really has little effect
on performance.

MATHEMATICAL ANALYSIS

The system frequency response function relates the relative sound pressure
level out_ut of a loudspeaker system, E(s), to the complex frequency variable,
s. "Relative sound pressure level" means that the sound pressure level
at high frequencies is assumed to approach unity, so that the function
actually expresses the low-frequency output as compared to the higher-frequency
output of the same driver-in-box. This corresponds to what is commonly
called the "woofer section frequency response" of a multiple-driver
speaker system. (This paper is solely concerned with the low-end response
design problems.)

The response function is

4
s

C(s): (_)

_t + Ob / + [ ¥b + rs2 + Q--_t + lb2 s2

+\mb + + *b2fs
The frequency response is controlled by the six parameters in the function,
three for the woofer and three for the box:

f natural resonant frequency of the woofer (measured on a flat
s baffle)

Qt total Q of the woofer in the system at fs' including all electri-

cal and mechanical resistances, which I assume throughout this

paper to equal Qts' the total Q of the woofer itself

Vas volume of air having same acoustic compliance as driver sus-
pension

fb frequency of enclosure resonance (resonance of air mass in vent
with compliance of air volume in box)

QD total box Q at fb due to all enclosure losses; assumed through-

out this paper equal to 7

Vb net volume of air inside enclosure

The driver resonant frequency, rs' is usually defined at the free-air Iunen-
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closed) resonant frequency, but I prefer to use the resonant frequency as
measured on a flat baffle because this method includes the effects of an
air mass load more like the air load the driver experiences in an enclosure.

Therefore frequency response calculations based on fs defined and measured
this way should be more accurate.

Under certain circumstances Qt will differ from Qts' If damping material is

packed close around the back of the woofer in the enclosure, the added
resistance to air flow will change the woofer's effective Q. Also making
the source impedance driving the woofer other than zero--for example by
interposing resistance between the amplifier and woofer, or by designing
as special negative-output-impedance amplifier--will change the value of Q
(Ref. 5). However, ordinary high-damping-factor transistor amplifiers have
near-zero output impedance, and so long as you have a low-resistance

connection from the amp to the woofer the Q will be undisturbed; Qt will

equal Qts' (The marking "4-8 ohms" that you see on the back of amps means

"attach a 4-8 ohm load here," not that the amplifier's output impedance is

itself equal.to 4-8 ohms.) I have assumed throughout this paper that Qt

and Qts are interchangeable. If you ever do run into a case where they differ,

Qt is the proper number to use in the formulas and graphs presented here.

The box Q, Qb' is assumed here to be made up solely of leakage losses;

losses of any other kind would change the form of eq. (1) slightly. I

also assume throughout that Qb is equal to 7. These two assumptions give

results that are in reasonable conformity with practical speaker enclosure
construction methods (Ref. 2).

There are other important driver parameters, such as the maximum power hand-
ling ability and the efficiency, that are not considered at all in this paper.
Only factors that affect frequency response are considered. I would like to
point out, however, that once a driver is selected, the enclosure design has
no effect on system efficiency. The well-known dictum that "vented systems
are more efficient than sealed systems" really means that a woofer optimized
for use in a vented box of a certain size is more efficient than a woofer

optimized for use in the same box sealed. This is because vented systems can
use woofers of lower Q and still get good response shapes, and lower Q is
caused by higher motor strength (larger magnet). Hence higher efficiency.

Keele observed that driver compliance Vas has relatively little effect on system

frequency response (Ref. 3). I also know that of the woofer physical
parameters--compliance, cone mass, magnet strength, and so on--compliance
is the one that varies the most in production. An examination of driver
resonant frequency and Q reveals that these two factors contain.the
compliance implicitly. The resonant frequency is sensitive to the com-
pliance, of course, because it is determined by the cone mass and
compliance. The Q is in turn influenced by the compliance because it is
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measured at the resonant _'requency.

The undesired sensitivity to compliance may be "factored out" of the Q
by choosing to describe the woofer's Q by

fs/Qt

rather than simply by Qt' This factor may be analyzed by substituting
the mechanical parameters for the acoustic parameters:

fs = _ 291't_s : 2TfRms (2'
Qt _°sMms/Rr.s Mms

W S is the resonant frequency in radians/second, Rms is the total driver
cone resistance in mechanical units, and Mms is the cone mass in mech-
anical units. (For a complete description of the mechanical parameters
and their effects, see Ref. I or 2.) You can see that the frequency, and
therefore the dependence on compliance, cancels out.

Similarly we can use as a descriptive woofer parameter in place of Vas
the factor:

Vasfs 2

That this factor does not really have any dependence on compliance may
again be demonstrated by expressing it in other parameters:

1 I 1 (3)Vasfs 2 = Vas !_2VasMas 41_2Mas

where Mas is the acoustic mass of the woofer. Thus the compliance cancels '

out and the factor Vasfs,2 is really an expression of the acoustic mass of
the woofer (or of the reciprocal of the mass, to be more exact).

Thus we may, if we wish, replace the three usual woofer parameters

fs' Qt' and Vas (4)

with the "more fundamental" set

fs/Qt , Vasfs 2 , and Vas (5)

parameter Vas has no dependence on the other two so it can stay the

Q

The
same.
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The "fundamentalness" of fs/Qt and Vasfs2 may be confirmed by re-examining

the system response function, eq. (1). You can see that Qt appears in three

places, each time in the factor fs/Qt. The compliance Vas appears only once,

and then in the factor Vasfs 2.

This might suggest that loudspeaker parameters be specified in terms
of the new set of factors (5) rather than the usual set (4). As a prac-
tical matter this is not necessary. Imagine that you have in hand a
woofer manufactured with the correct cone mass and motor strength but

the compliance is off by a certain amount. The true values of fs' Qt' and V_

£or your woofer will all differ from the values specified by the manufacture".

_ever, the values of the factors fs/Qt and Vasfs2 as calculated from the

specs will be correct for your woofer because it has the right cone mass and

motor strength. Errors in fs and Qt caused by incorrect Vas will cancel when

the parameters are combined in fs/Qt and Vasfs2. Your own calculation of these
two factors will give you the same numbers as the manufacturer would have
given you anyway.

To the woofer designer, however, for whom the motor strength, cone mass, and
compliance are variables that he constrols independently, the new set of
woofer parameters (5) may be very useful.

A BOLD CONJECTURE

After seeing how the new parameter set fit nicely into eq. (1), I turned to
Thiele's well-known table of loudspeaker alignments (Table I, Ref. 1; with
minor corrections in Ref. 3) to see if restating the column headings in
terms of the new factors might lead to any simplifications. To my surprise
I found on the right-hand side of the table a column of "approximately con-
stant quantities" for the first nine Alignments. Thiele had observed that

_-vasfs2 = 1.41 (6)Vbf32

Qt
:' and --fb = .39 (7)

f
s

(My symbols here are slightly different than those in the original table.)

f3 is the -3 dB bass cutoff frequency.
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Thus Thiele has uncovered two simple approximations relating f3 and fb'

the frequency to which the box is tuned, to the three driver parameters and

the box volume. Note that with Qb assumed equal to 7, all six of the frequency-

response-determining parameters in the system response function are accounted
for. If we make the bold conjecture that this is all the information needed
to design a vented speaker system,we can recast eq. (6) and (7) into two
design formulas:

-Va__sfs2 .84 Va/-_sfs2 (8)

fs
fb .39-- (9)

Qt

The design procedure is very simple:

1) Pick a convenient size box, Vb.

2) Calculate the low-end cutoff (-3 dB) frequency it will give you,
f3, from eq. (8). If dissatisfied, 9o back to 1). This time pick
a bigger box.

3) Tune the box resonant frequency, fb' to the value specified by
eq. (9).

The boldness of this conjecture is that it suggests that you can design a
variety of vented systems, using different box volumes and getting different
cutoff frequencies, for a given woofer. This is exactly what the loudspeaker
system designer--who often has only a limited choice of drivers to pick
from--would like to do. Most other design methods give only one allowable
box volume, box frequency, and cutoff frequency for a given driver (unless

you are willing to take extreme measures such as twiddling with Qt by
adjusting the source impedance).

FOURTH-ORDER VENTED SPEAKER SYSTEM RESPONSE GRAPHS

Formulas (8) and (g) can be tested by substituting the parameter values they
prescribe back into the system response equation (1). We can use the response
equation to see what sort of frequency response results from systems designed
according to the formulas. The actual response calculations are very tedious
and repetitive, but a programmable calculator handles them nicely.

The formula for fb eliminates it as an independent variable, since it is now

expressed in terms of other quantities. Assuming Qb constant at 7 eliminates
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it as a varia_Jle. The number of variables may be further reduced by normal-
izing, that i,, expressing some variables in terms of other_.

A normalization scheme that works well is to express frequency in units of

fs/Qt, that is, to use as the frequency variable

f

fsQt

and to express volume in units of VasQt2, that is, to use as the volume
parameter

Vb

VasQt 2

The details of how and why this is done are explained in the Appendix.

The reduction in the number of variables simplifies the problem so that

speaker systems designed for many combinations of fs' Qt' Vas' and Vb can
have their frequency response characteristics expressed in a reasonable
number of graphs. These graphs appear in Figures I through 7.

Each Figure is for one value of Qt' Each Figure has several curves for

different values of box volume Vb. The curves are labeled for volumes ranging

from 2.0 VasQt 2 to 16.0 VasQt 2. The frequency scales are calibrated from

.2 fs/Qt to 2.0 fs/Qt.

The unusual units will probably make it difficult for most people to concept-
ualize what the graphs represent. Imagine a "benchmark woofer" with

fs/Qt = 100 Hz and VasQt2 = I liter or ift 3

(A_woofer with fs = 15.9 Hz, QTS = .159, and VAS = 39.6 liters or 39.6
fta would fill the bill.)

For such a woofer you can read the frequency scale directly in hertz
(ignoring the decimal points) from 20 to 200 hertz; and you can read
the curves as though labeled simply in liters or ft3.
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To apply the curves to any other woofer:

1) Pick the Figure for Qt value closest to that of the woofer
you are considering.

2) Calculate the factor fs/Qt for the woofer and multiply the

frequency scale numbers by that factor to get the frequency
scale in herz.

3) Calculate the factor VasQ_2 for the woofer and multiply the

numbers that label the_curves by that factor to get the curve
labels in liters or ft_.

Examination of these curves reveals some interesting facts. First of all,
it is evident that for a given woofer you have a range of useable box
volumes and bass cutoff (-3 dB) frequencies, rather than a single
"correct" box volume. The cost of this flexibility is some ripple in the
response curve. Even allowing only ±1 dB of ripple, however, the
allowable box volumes span a considerable range. For example, a woofer
with a Q of .32 can be used in boxes with volumes from 2.0 to 11.3

VasQt2 t_ give cutoff frequencies from .35 to .63 fs/Qt. This is a span of
almost six to one in box volume, and two to one in cutoff frequency.

Also note that there is little difference in the curves from Figure to
Figure; the curves for a woofer Q of .159 (Figure 1) are very similar to the
curves for a woofer Q of .20 (Figure 2). This is because the normalization
technique "factors out" the unwarranted sensitivity to compliance that injects
large variations into families of response curves plotted using other systems
of units.

This type of presentation also makes it possible for you to interpolate

between the Figures for intermediate values of Qt if you wish to do so.

The cutoff frequencies for various combinations of woofer Q and box volume
are summarized in Table 1. The figures given in the body of the Table are
limited to combinations that give +1 dB of ripple or less.

Remember that the curves in the Figures and the entries in Table I are
true only for designs that conform to eq. (9). The fact that eq. (9) yields
many designs with reasonable response shapes suggests that it is a worth-
while design tool.

The value of eq. (8) may be assessed by comparing the cutoff frequencies
it predicts (which are given in Table 2) against the exact values for the
cutoff frequencies calculated using the system response equation (which
exact values are given in Table 1). Comparison shows that eq. (8)'s
accuracy is rather poor.
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Table 1

Cutoff frequencies (in units of fs/Qt) of fourth-order vented loudspeaker

systems tuned according to eq. (9); for combinations of woofer Q and box
volume which give ripple of ±1 dB or less,

Vb (in units of VasQt2)

Qt 2.0 2.8 4,0 5.7 8.0 11,3 16.0

159 f3 = '61 .53 .46 ,40 .37
9

_20 ,61 .53 .46 .40 .37 .35

.25 ,62 .54 .46 .40 ,37 .35

,32 .63 .55 .47 .40 ,37 .35

,40 ,64 ,56 .48 .41 ,36 .35

·50 .59 .51 ,42 .36 ,34

.63 .57 .47 ,35 ,34

Table 2

Estimates of cutoff frequency f3 (in units of fs/Qt) of fourth-order vented

loudspeaker systems tuned according to eq. (9), Estimates provided by
eq. (8) ('firstrow of the table) and eq. (10) (second row of the table).
Comparison with Table i shows that eq. (10) is the better estimator.

Vb (in units of VasQt2)
2.0 2.8 4.0 5.7 8.0 11.3 16.0

f3 =

·84 - .59 .50 .42 .35 .30 ,25 .21

Vb

f3 =

- .so 42 3s 30
1 .71
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The main reason for the failure of eq. (8) is that it derives from figures
based on the simplifying assumption that the box Q is infinite, while the
curves in the Figures and the cutoff frequencies in Table I are calculated
on the basis of box Q equal to 7. The finite box Q causes the vent radiation,
and therefore the output in the region around cutoff, to be lower. This
cause the frequency response curve to :'sag"around the low end, and the
-3 dB frequency to be higher. (Small gives alignment coefficients taking
into account finite box Q in Ref. 2.)

A better estimator of cutoff frequency is

Vas/_?2Vasfs2 (10)

f3 = 1. _V b

Cutoff frequencies predicted by this formula are also given in Table 2.
Its accuracy is about ±15%.

FOURTH ORDER (VENTED) SPEAKER ENCLOSURE DESIGN EXAMPLE

The Speakerlab W804R is a 210-mm (8-!nch) woofer generally used in a sealed
enclosure of about 20 liters (0.7 ft3). A high compliance unit with 8 ohms
nominal impedance, its Thiele/Small parameters are:

fs = 27 Hz

Qt .32

Vas : 99 liters (3.5 ft3)

These give

fs/qt = 84 Hz

VasQt2 = 10 liters (.36 ft3)

fb = .39fs/Qt = 33Hz

The frequency response curves for Qt equal to .32 apRear in Figure 4. Figure
15 shows the same curves relabeled _ to correspond to the parameters of the

W804R. Since Vasqt2 is equal to 10 liters, the 1.4 curve has been relabeled
14 liters, the 2.0 curve has been relabeled 20 liters, and so on. Similarly,
the frequency axis has been rescaled in hertz; 84 Hz takes the place of

1.0 fs/Qt, 168 Hz replaces 2.0 fs/Qt, etc.

The flattest-looking curve in Figure 15 is the 81 liter (2.8 ft3) one, which
gives response down to (-3 dB limit) 31 Hz. Increasing the box volume to 114

liters (4.0 ft3) will reduce the cutoff frequency slightly to 30 Hz; decreas-
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ing the volume to 57 liters (2.0 ft3) will raise the cutoff to 34 Hz. Even

a box as small as 40 liters (1.4 ft3) gives a cutoff of 40 Hz--not bad for a
woofer this size.

Figure 15 also shows (dashed curve) the frequency response that results when
the WSO4R is used in a design conforming to Thiele's Alignment 4. The Align-

ment 4 coefficients call for a box volume of 3.7 VasQt2, equal here to 53

liters (1.86 ft3). Alignment 4 predicts (assuming infinite box Q) a cutoff
frequency of 37 Hz; with a box Q of 7 (which Figure 15 assumes) the cutoff
frequency is 41 Hz.

Butterworth alignments are designed to give "maxilnally flat" response, i.e.,
the response curve lying close below the O-dB axis without crossing above it.
Chebyshev alignments are designed to have equal ripple--equal humps above
and below 0 dB.

Alignment 4 is a quasi-Butterworth alignment, and with infinite box Q would
give response close to 0 dB above 50 Hz. But because ny calculations and the
curve in Figure 15 are based on box Q equal to 7, the curve sags about .3 dB
around 70 Hz.

Figure 15 shows that confining your designs to systems that meet the Butter-
worth or Chebyshev criteria is unnecessarily restrictive. There are many
other choices of box volumes that fail to meet those criteria because they
have unequal humps and dips, but nevertheless give extended bass response
within reasonable ripple limits.

The extended bass response is of course at the cost of box volume. It is up
to the system designer to decide whether a given reduction in cutoff frequency
is worth the extra volume required. Thiele's alignments, particularly if
corrected for finite box Q as in Ref. 2, are optimum in this sense: smaller
enclosures than called for by the alignment suffer rapid decay of bass
response, while larger enclosures give small improvements in cutoff frequency
at great cost in volume.

Frequency response curves for the W804R in sealed enclosures are shown in FiQ-
ure 17 for comparison. The flattest curve is provided by a volume of 20 liters

(.7 ft3). Such a system gives response down only to 60 Hz. Venting the same
enclosure (referring again to Figure 15) would extend the cutoff to 53 Hz.

Note that using a larger volume for the sealed system does not improve the
frequency response much. While the curve for 40 liters stretches far to

the left, response at 40 Hz is 6 dB down. The output level around 40 Hz

could be brought up and 'theresponse made flatter by increasing Qt (and _

increasing fs and decreasing Vas so as to keep fs/Qt and VasQt2 constant).
This could be done by weakening the magnet--at a savings in magnet material
and a cost in lost efficiency. This is an example of how vented systems
can be more efficient in comparison to sealed systems. There is a tradeoff
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between bass response and efficiency, and vented systems drive a harder bar-
gain with the laws of acoustics.

SIXTH-ORDER (EQUALIZED) VENTED LOUDSPEAKER SYSTEM DESIGN

Fourth-order vented systems using high-compliance woofers are quite suscept-
ible to excessive cone excursion caused by subsonic signals. The accepted
wisdom that vented systems exhibit less cone excursion than sealed systems
is true only with respect to in-band signals.

At very low frequencies, cone motion in both the sealed and vented cases is
limited only by the total stiffness (reciprocal of the compliance). For the
sealed system, the total stiffness is the sum of the cone suspension stiffness
plus the enclosure air volume stiffness. The vented system, however, allows
air flow in and out of the enclosure (the impedance of the vent air mass
approaches zero with decreasing frequency) so that the only cone-restaining
stiffness is that of the cone's own suspension.

My experience has been that nearly all record-playing equipment available
today emits considerable subsonic signal energy at the output. This means
that fourth-order systems using a high compliance woofer, such as the one
in the previous design example, must either be operated at a reduced power
level (compared to the power rating based on ability to handle in-band
signals) or be operated with an auxiliary highpass filter inserted somewhere
in the signal path to reduce the amplitude of subsonic signals.

Most home audio equipment, and of course all professional equipment, does
allow for the insertion of extra processing in the signal path. In home
systems a filter or equaliizer can go between the preamplifier and amplifier,
or in the tape monitor'circuit all modern preamplifiers and stereo receivers
provide.

The addition of a filter or equalizer (Ref. 6) also makes possible the design
of speaker systems with system response functions of higher order. Keele has
pointed out thata fourth-order design can be converted to a sixth-order design

by reducing the box frequency fb by half an octave and using a second-order

highpass filter with a Q of 2 (Ref. 4). The theoretical cutoff frequency of

the filter, faux' is set the same as the new box frequency. The filter's

frequency response exhibits a peak of 6 dB, which approximately offsets the
sag in response of the driver/enclosure combination caused by the changed box
tuning. Hopefully all this will result in an extension of the bass response
by another half octave, as well as eliminate the undesired subsonic energy.

Encouraged by our previous success, we courageously write a new design
formula:

f
S

fb = faux : .276Qt (11)
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I recalculated all the system response curves, this time with the system
response function of eq. (1) multiplied by the second-order response function

of the filter, and with fb and faux as called for by eq. (11). The results

appear in Figures 8 through 14. Comparison of these curves to those for the
fourth-order case--and direct comparison is possible with the units defined
as they are in the normalization used here--shows that detuning the box
frequency one-half octave and using the equalizer filter does indeed extend
the bass response considerably. However, the ripple is greater. The usable
box volumes (giving ripple of ±1 dB or less) span a narrower range. There are
no box volumes, in fact, that give ripple less than I dB for woofers with Q of
.5 or over. Table 3 lists the cutoff frequencies for the useable combinations.

useful approximation for estimating the cutoff frequency is

Vasfs 2
f3 : .71 (12)

V b

Cutoff frequencies predicted by this approximation are listed at the bottom
of Table 3 for comparison. The accuracy of the approximation is about ±20%.

SIXTH-ORDER (EQUALIZED) VENTED SPEAKER SYSTEM DESIGN EXAMPLE

The WSO4R woofer of the previous example may be used in a sixth-order system
if per eq. (11) we set

fb : faux : 23 Hz

Figure 16 shows the sixth-order frequency response curves for a woofer with
Q of .32, again rescaled to correspond to the parameters of the W804R.

The flattest curve this time is the one for 57 liters (2.0 ft3), which gives
,a cutoff frequency of 23 Hz. Compare this to the flattest curve (81 liters)
_or the fourth-order design (Figure 15). Going to a sixth-order system
extends bass response 26% lower in a 30% lower box, as well as improving the
power handling ability and reducing distortion by reducing subsonic cone
motion.

A box as small as 29 liters (1.0 f_3) may be used for a 41 Hz cutoff, though
at the cost of a +1.2 dB hump around 110 Hz.

Figure 16 also shows the frequency response of this woofer in a system designed
to Thiele's Alignment 16, which the woofer fits well--the woofer's Q of .32 is
almost exactly equal to the Q called for by the Alignment, .317. (In acous-
tics, ±1% is exact.) Note that Alignment 16 gives a nicely shaped response
curve, though it has some sag because of the finite box Q used in calculating
the curve. This also makes the cutoff frequency 25 Hz rather than 23 Hz as
predicted by the Alignment._
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Table 3

Cutoff frequency f3 (in units of fs/Qt) versus box volume Vb (in units of

VasQt 2) of sixth-order (equalized) vented loudspeaker systems tuned accord-

ing to eq. (11)_ for combinations of woofer q and box volume which give ripple

of ±1 dB or less. The bottom line of this table gives estimates of f3 as

provided by eq. (12),

V b (in units of VasQt2)

qt 2.0 2.8 4.0 5.7 8.0 11.3 16,0

·159 f3: '55 .44 .32 .28'
.20 .56 .45 .32 .28

,25 .57 .47 .32 .28

.32 .58 ,48 .34 .28 .26

.40 .60 .51 .39 .28 .25

*This combination gives ripple greater than i dB--it gives a 1.1 dB dip.

Est. f3 =

71 = .50 .42 .36 .30 .25

Vb
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CONCLUSION

The box resonant frequency design rule for fourth-order vented speaker
systems (eq. 9) gives designs with reasonably flat, extended bass response
and can be applied over a wide range bf driver parameters and enclosure
volumes.

The design rule for sixth-order (equalized) systems (eq. 11) also works well,
though over a narrower range of driver/enclosure combinations. A sixth-order
design can provide bass cutoff as much as one-half octave lower than a fourth-
order design using the same driver in the same volume enclosure.

Useful estimates of the cutoff frequency f3 for fourth-order and sixth-order

designs are provided by equations (10) and (12), respectively. More exact
values for the cutoff frequency appear in Tables I and 3.

Actual frequency response curves for systems conforming to the design rules

for fb' and conforming to the assumption that box Q, Qb' is equal to 7,

appear in Figures i through 14. You can apply these response curves to

systems with any arbitrary values of Qt' fs' Vas and Vb within reasonable

limits. You can get response curves for values of Qt and Vb between the

values on which the curves are based by interpolation; you can interpolate
between Figures as well as between curves in the same Figure.
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APPENDIX--NORMALIZATION

Normalizing is a method of redefining the units (hertz and liters) appearing
in a set of equations so as to simplify the equations. The normalization
scheme used in this paper is chosen to make (in the normalized units)

f
S

= 1 (13)
Qt

Vasfs2 = 1 (14)

This is achieved by defining

f' = fs--_Qt (15)

V' : V (la)

VasQt 2

Q' q (17)

where primed symbols denote normalized values and unprimed symbols denote
the actual values in hertz and liters. Note that the normalized quantitites
are dimensionless, i.e., pure ratios. Q stays the same because it was a
dimensionless quantity to start with.

In normalized units the six parameters that determine frequency response in
a fourth-order system become:

fs
f, =
s fs_ : Qt Qt (18)

V

V_s = as = 1 Qi2 (]_lVasQt2 Qt2

Q_ : Qt (2o)

f
fb = .39 s .39(1)= .39 (21)

Vb

VasQt2 (22)

-16-



Qb : Qb : 7 (23)

For'sixth-order systems, we have

fs (24)
f_ : f' = .276--- = .276

aux Q_

Thus normalizing helps reduce our six original independent parameters to two--

_ andV_.
To translate from the normalized units in the Figures back to real units

at hertz and liters, we merely "denormalize," that is, multiply by fs/Qt

end VasQt 2 where previously we divided:

f = f,(fs/Qt) (25)

VD = V_(VasQt2) (26)

To remind you to do this multiplication, I wrote "2.0 VasQt2" on one curve

of each Figure. "2.0" is the value of V_ on that curve.
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